Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 6: 169, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23181009

RESUMO

Brain-computer interfaces (BCI) are communication systems that allow people to send messages or commands without movement. BCIs rely on different types of signals in the electroencephalogram (EEG), typically P300s, steady-state visually evoked potentials (SSVEP), or event-related desynchronization. Early BCI systems were often evaluated with a selected group of subjects. Also, many articles do not mention data from subjects who performed poorly. These and other factors have made it difficult to estimate how many people could use different BCIs. The present study explored how many subjects could use an SSVEP BCI. We recorded data from 53 subjects while they participated in 1-4 runs that were each 4 min long. During these runs, the subjects focused on one of four LEDs that each flickered at a different frequency. The eight channel EEG data were analyzed with a minimum energy parameter estimation algorithm and classified with linear discriminant analysis into one of the four classes. Online results showed that SSVEP BCIs could provide effective communication for all 53 subjects, resulting in a grand average accuracy of 95.5%. About 96.2% of the subjects reached an accuracy above 80%, and nobody was below 60%. This study showed that SSVEP based BCI systems can reach very high accuracies after only a very short training period. The SSVEP approach worked for all participating subjects, who attained accuracy well above chance level. This is important because it shows that SSVEP BCIs could provide communication for some users when other approaches might not work for them.

2.
PLoS One ; 7(10): e48331, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118987

RESUMO

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human's movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.


Assuntos
Terapia de Exposição à Realidade Virtual/instrumentação , Animais , Humanos , Relações Interpessoais , Movimento , Ratos , Robótica , Fatores de Tempo
3.
Artigo em Inglês | MEDLINE | ID: mdl-23366764

RESUMO

Brain-computer interface (BCI) systems translate brain activity into messages or commands. BCI studies that record from a dozen or more subjects typically report substantial variations in performance, as measured by accuracy. Usually, some subjects attain excellent (even perfect) accuracy, while at least one subject performs so poorly that effective communication would not be possible with that BCI. This study aims to further explore the differences between the best and worst performers by studying the changes in estimated accuracy within each trial in an offline simulation of an SSVEP BCI. Results showed that the worst performers not only attained lower accuracies, but needed more time after cue onset before their accuracies improved substantially. This outcome suggests that poor performance may be partly (though not completely) explained by the latency between cue onset and improved accuracy.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Visuais/fisiologia , Interface Usuário-Computador , Adolescente , Adulto , Idoso , Criança , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...